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Lipoprotein(a) (Lp(a)), an LDL-like particle containing ape(a), a highly glycosylated protein, is a significant 
genetic risk factor for coronary heart disease (CHD). Lp(a) phenotypes are characterized into single-band and 
double-band phenotypes according to electrophoretic mobility compared to that of apo B-100. The first goal was 
to assess whether Lp(a) phenotype influences the concentrations and metabolism of other serum lipoproteins. A 
second focus was to evaluate the effect on Lp(a) concentrations of substituting medium chain saturated fat for a 

polyunsaturated, baseline diet. In this two-way cross-over study 18 females ate a baseline, polyunsaturated fat 

diet (Poly/Sat en% ratio = 10.5/11.9) for I week, and then a high saturated fat diet for 4 weeks (Poly/Sat en% 
ratio = 3.409.8) providing either 14 energy % medium chain triglycerides (MCT) 810 + IO:0 or 12:O. whereas 
monounsaturated fat was held constant. Subjects with double-band Lp(a) phenotypes had higher (P = 0.000) 

Lp(a) levels on the baseline diet compared to single-band phenotypes. Both diets decreased serum Lp(a) 
concentration about 30% (P < 0.05) but raised serum LDL-C about 11%. On the baseline diet, Lp(a) 
polymorphism did not affect serum LDL-cholesterol levels or receptor-mediated uptake and degradation of LDL. 
In a two-way ANOVA 8:0 + IO:0 and 12:O had significantly dtzerent effects on change in serum HDL-C 
concentrations and LDL receptor activity in MNC, but Lp(a) polymorphism had no effect on the variables 
measured in this study. These results suggest that the response of LDL and Lp(a) levels to the two saturated fat 
diets were independent of each other. Lp(a) polymorphism did not seem to influence LDL metabolism. (J. Nutr. 

Biochem. 9:106-I 13, 1998) 0 Elsevier Science Inc. 1998 
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Introduction 

Lipoprotein (a), usually referred to as Lp(a), was first 
demonstrated by Berg’ as a specific lipoprotein genetic 
variant in human blood and was subsequently associated 
with an increased risk for coronary heart disease (CHD)2-7 
and cardiovascular disease (CVD).*-‘* Lp(a) is different 
from low density lipoprotein (LDL) in that it contains an 
apolipoprotein (a) (ape(a)) as well as an apoprotein 
B-100.‘3P’5 Ape(a) is a highly glycosylated protein with a 
size varying from 300 kDa to 800 kDa16-18 due to the 
different numbers of kringle-4-like repeats in the ape(a) 
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molecule I9 Most plasma Lp(a) is probably derived from 
liver.*’ ’ 

A high Lp(a) lipoprotein level is considered a significant 
and independent genetic risk factor for CHD because Lp(a) 
does not interfere with the LDL receptor pathway, and there 
is no significant difference between normal and hypercho- 
lesterolemic patients with respect to Lp(a) lipoprotein up- 
take by cells. 2’ Reportedly, a high level of Lp(a) interferes 
with thrombosis-thrombolysis in arteries that are becoming 
atherosclerotic, and binding of cholesterol-rich Lp(a) parti- 
cles at the sites of vessel damage may contribute to the 
development of atherosclerosis. 

Lp(a) occurs in several heterogeneous forms that may be 
related to the molar ratio of ape(a) to apoB in the lipopro- 
tein, the size of ape(a) and the existence of mixed ape(a) 
isoforms l6 Lp(a) phenotypes are categorized according to 
relative electrophoretic mobilities compared with apoB- 100 
as F (faster than apoB-lOO), B (similar to apoB-lOO), Sl, 
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S2, S3, and S4 (slower than apoB-lOO), and as their 
respective double-band (heterozygous) phenotypes.” Re- 
searchers have identified at least 34 different isoforms,22 
which seem to be governed by one single Lp(a) locus on 
chromosome 623 on which the plasminogen gene also is 
located.24,25 An inverse relation between ape(a) size and 
serum Lp(a) levels was suggested by Utermann et al.” 
Although it has been demonstrated that polymorphism of 
certain apolipoproteins, e.g., apoprotein E, influences li- 
poprotein metabolism,26 the effect, if any, of different Lp(a) 
phenotypes on lipid metabolism has not been studied. 

The metabolic regulation of LDL and Lp(a) concentra- 
tions in blood may differ. *‘zZ8 Pharmacological interven- 
tions that reduce LDL, e.g. inhibitors of 3-hydroxy-3- 
methyglutaryl coenzyme A, cholestyramine, or fibric acid 
derivatives, did not influence Lp(a) levels in many stud- 
ies29-33 although the Lp(a) response to drug therapy may be 
dependent on the initial Lp(a) levels in hypercholester- 
olemic patients,34 and some drug interventions may reduce 
Lp(a) levels. 35,36 Dietary lipid modification often is used to 
lower serum LDL concentrations, at least modestly, but it 
was believed that dietary modification does not affect Lp(a) 
lipoprotein levels. In several recent studies Lp(a) concen- 
trations increased on diets high in trans fatty acids,37-39 
which tend to mimic the effects of saturated rather than 
unsaturated fats on lipoprotein metabolism.40 Tholstrup et 
a1.4’ showed that saturated fatty acids do not have identical 
effects on Lp(a). Diets high in stearic acid (l&O) but not 
palmitic acid (16:0) or a mixture of 14:0 + 12:0 caused 
Lp(a) to increase. The effect of lower chain saturated fatty 
acids on Lp(a) has not been investigated. The study de- 
scribed in this paper was designed to assess the effects of 
two saturated fat diets, one with medium chain fatty acids 
(capric (8:0) + caprylic (10:0) and a 12-carbon fatty acid 
(lauric acid) on Lp(a) concentrations and the influence of 
Lp(a) polymorphism on cholesterol metabolism. 

Method and materials 

Subjects 

Eighteen healthy premenopausal women were randomized into 
this two-period crossover study, the minimum number needed to 
detect a 10 percent mean difference with an eight percent standard 
deviation by a power of 0.9. Because one subject left the study 
after period one, 17 subjects consumed the medium chain fatty 
acid (MCT) (C8:O + C1O:O) diet and 18 subjects finished the 
lauric acid diet (C12:O). The average age of all subjects was 24 2 
4 years (mean 5 SEM), range, 19 to 33 years; the average weight 
was 62.2 C 11.7 kg, range 40.5 to 91.8 kg; and the average height 
was 161.9 2 7.7 cm, range, 147.9 to 176.5 cm. The fasting serum 
cholesterol concentration at screening was 4.33 ? 0.57 mmol/L 
(mean -+ SEM) with a range between 3.70 and 6.13 mmol/L. The 
health of subjects was verified by blood chemistry and a health 
questionnaire. Anyone taking medications influencing lipid me- 
tabolism was not recruited into this study. The Lp(a) phenotype 
was not known before the study. Ethnic background of subjects 
was 10 Caucasians, 7 Asians, and 1 African-American. Each 
subject signed a consent form approved by The Ohio State 
University Biomedical Human Subjects Committee. 

Design 

In this two-period and two sequence design involving 18 subjects, 
nine subjects ate the MCT diet in the first period, and the other 
nine received the lauric acid diet. Then, in the second period, all 
subjects consumed the alternate diet. To standardize nutrient intake 
before the experimental treatments and provide a comparison base, 
the subjects were given a baseline diet designed to be higher in 
polyunsaturated fatty acids (PUFAs) and lower in saturated fatty 
acids than the treatment diets for the initial week of each period. 
The experimental diets were given during the following 4 weeks. 
A 7-week washout period was held between periods. The study 
was designed so that blood samples were obtained at the same 
phase of each subject’s menstrual cycle. Blood samples were 
collected twice during the last three days of baseline and twice 
during the last three days of experimental feeding, and the two data 
points were averaged. After the blood drawing, serum and MNC 
(mononuclear cells) were obtained by centrifuging at 500 X g and 
800 X g, respectively, for 20 min. Some serum samples were used 
immediately for procedures requiring fresh blood. The remaining 
samples were frozen at -80°C for later analysis. 

Diets 

According to the nutrient analysis by Food Processor II software 
(ESHA Research, Salelm, OR), the baseline diet contained 40 en% 
total fat, 11.9 en% saturated fat, 14.9 en% monounsaturated fat, 
and 10.5 en% PUFA, and 323 mg cholesterol (Table I). The 8:0 + 
10:0 and 12:0 diets provided 40 en% total fat, 19.8 en% saturated 
fat, 14.8 en% monounsaturated fat, and 3.4 en% PUFA, and 316 
mg cholesterol (Table I). Commercial miglyol or trilaurin (42% of 
the fat blend), obtained from HULS America Inc. (Piscataway, NJ 
USA), was the main fat in the experimental fat blends. Food 
Processor II software was used to calculate the components of the 
diets by adding data on fatty acid composition in each menu to the 
softwear data base (Table I). The specific fatty acid composition 
of l-day composites of each menu was analyzed by gas liquid 
chromatography (GLC) (Table I). 

Biochemical procedures 

Lp(a) Concentration. Serum Lp(a) concentrations were measured 
by ELISA (MACRA TM Lp(a) EIA Kit from Strategic Diagnostics 
Industries, Inc. Newark, USA). 

Lp(a) phenotype. Lp(a) phenotypes were identified by SDS- 
PAGE followed by Western blot analysis of ape(a) isoforms 
according to Taddei-Peters.4’ The membrane blotted with protein 
was incubated with mouse-anti-human ape(a) as first antibody 
(clone 4F3, RP-070, Perimmune, Inc. Rockville, MD USA). A 
peroxidase-labeled goat-anti-mouse IgG conjugate (Sigma) was 
used as a second antibody to bind the first antibody. To determine 
ape(a) isoforms, human ape(a) phenotype standards (RP-155, 
Perimmune, Inc) were compared with those of samples. 

Serum lipoprotein cholesterol. Total cholesterol, free cholesterol, 
LDL-cholesterol, total HDL-, HDL,- (by difference) and HDL,- 
cholesterol and TG concentrations were determined as in previous 
studies.43,44 Data for cholesterol and TG concentrations from two 
pre- and two post-period measurements were averaged. The 
coefficients of variation, evaluated for the assay using previously 
frozen pool samples, were 0.9% for total cholesterol, 1.2% for total 
HDL-cholesterol, 3.2% for HDL,-cholesterol and 1.6% for TG 
levels. 

Apolipoprotein concentration. Apolipoprotein A- 1 and B were 
assayed by a turbimetric procedure (Raichem, San Diego, CA 
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Table 1 Daily energy and nutrient intake on baseline and experimental diets (mean + SEM) 

Dietary variable 
Baseline MCT 
(n = 35) (n = 17) 

Laurie acid 
(n = 18) 

Energy (MJ) 
Protein (g)* 
Carbohydrate (g) 
Total fat (g) 
Fatty acids (g)+ 

8:0 + 10:0 (MCT) 
12:o 
14:o 
16:0 
18:0 
SFA 
MUFA 
PUFA 

Cholesterol (mg) 

8.1 2 0.1 8.3 2 0.1 8.4 k 0.1 
72 + 0 (15) 73 -c 0 (15) 73 i 0 (15) 

225 2 2 (46) 230 2 3 (46) 231 2 3 (46) 
86 k 1 (40) 89 c 1 (40) 89 2 1 (40) 

1.8 % 0.0 (0.8) 30.1 + 0.5 (13.6) 1 .o + 0.0 (0.5) 
3.6 k 0.0 (1.7) 2.1 2 0.0 (0.9) 31.4 2 0.5 (14.1) 
2.3 2 0.0 (1 .O) 1.4 2 0.0 (0.6) 1.4 t 0.0 (0.6) 
8.2 ? 0.1 (3.8) 5.9 + 0.1 (2.7) 5.9 2 0.1 (2.7) 
7.9 t 0.1 (3.7) 2.9 k 0.1 (1.3) 2.9 2 0.1 (1.3) 

25.7 i 0.5 (11.9) 43.9 k 0.6 (19.8) 44.1 i 0.7 (19.8) 
32.0 2 0.4 (14.9) 32.8 k 0.4 (14.8) 32.9 2 0.5 (14.8) 
22.6 t 0.3 (10.5) 7.5 2 0.1 (3.4) 7.5 + 0.1 (3.4) 
323 2 1 3162 1 3162 1 

Values in parentheses are calculated values for percent of food energy provided by the nutrient. 
* Analyzed from daily dietary records using Food Processor II Analyses Software (ESHA Research, Salelm, OR USA) 
+ As determined by gas liquid chromatography 
SFA-saturated fatty acid. MUFA-monounsaturated fatty acid. PUFA-polyunsaturated fatty acid. 

USA) in one pre- and one post-period serum sample. The coeffi- 
cient of variation of two control sera provided in the kits was 2.9% 
and 1.9% for apolipoprotein A-I and 2.5% and 2.5% for apoli- 
poprotein B. 

LDL receptor activity. LDL binding and degradation mediated by 
LDL receptors in MNC of ‘251-LDL were determined as in 
previous studies. 43.44 The composition of LDL was assumed to be 
constant throughout the whole study. 

LCAT and CETP activity. Endogenous cholesterol esterification 
(lecithin-cholesterol acyl transferase, LCAT) and transfer (choles- 
terol ester transfer protein, CETP) were measured by an isotopic 
method45 as in a previous study.54 

Statistical Analysis 
Differences between the baseline and experimental values were 
analyzed by paired r-test set at c1 = 0.05 (MINITAB). The 
differences between variables among different Lp(a) phenotypes 
on the baseline diet was determined by one-way ANOVA (P < 
0.05). Significance level was set at (Y = 0.05 to evaluate the main 
effects of diet and Lp(a) phenotype and the interaction between 
phenotype and diets by two-way ANOVA (SAS). Relationships 

among relevant variables were determined by Pearson correlation 
analysis. 

Results 

Infuence of Lp(a) phenotype on lipoprotein 
metabolism 
After SDS-PAGE and Western blot analysis of plasma 
obtained from the 18 subjects, the following Lp(a) pheno- 
types were identified: four S3, eight S4, one SltS2, three 
S2lS3, one S2lS4, and one null phenotype (no detected 
band) (Figure I). The subject with the null phenotype had 
the lowest Lp(a) level (0.016 g/L) among all subjects. 

Our first goal was to assess whether Lp(a) phenotype 
influences serum lipoprotein concentrations and lipoprotein 
metabolism when subjects consumed a constant (baseline) 
diet. To do this we analyzed the variables of interest at the 
end of each of the two baseline periods and stratified the 
data according to phenotype. The double band phenotypes, 
all of which included S2, were combined into one group. 
The other two groups were comprised of single band S3 and 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 3 1 
*cr -wp 

s4 s3 s4 so S2lS3 S3 S4 S4 s3 s3 s4 s4 s4 s3 
S2fS3 S2lS3 SllS2 S2/S4 

Figure 1 Lp(a) phenotypes by Western blot after gel electrophoresis for four hours at 80 V of 18 subjects. Because of the low Lp(a) concentration 
of subject 3, the phenotype of Lp(a) is hardly seen. However, after gel electrophoresis for seven hours at 80 V, the Lp(a) phenotype of subject 3 was 
detected to be 54 on other membranes. 
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Table 2 Comparison of serum lipoprotein cholesterol metabolic parameters (mean 2 SEM) on the baseline diet among different Lp(a) phenotypes 

L&4 S3 W) S4 Lp(a) Sl/S2, S2/S4, S2/S3 
Serum & MNC parameter (n = 8) (n = 16) (n = 9) Probability 

Lp(a) concentration (g/L) 
Total cholesterol (mmole/L) 
LDL-cholesterol (mmole/L) 
HDL-cholesterol (mmole/L) 
HDL,-cholesterol (mmole/L) 
HDL,-cholesterol (mmole/L) 
TG concentration (mmole/L) 

Apo A-l concentration (g/L) Apo B concentration (g/L) 
LCAT activity (kmol/L/hr) 
CETP activity (kmol/L/hr) 
Receptor-mediated degradation of 

‘*?-LDL (rig/l O6 MNC/hr) 
Nonspecific degradation of lz51-LDL 

(rig/l O6 MNC/hr) 
Receptor-mediated ‘“%LDL binding 

(rig/l 0” MNC) 

0.15 t- 0.04-a 0.04 -t 0.01 -b 
4.03 2 0.14 4.27 2 0.16 
2.24 k 0.26 2.43 2 0.17 
1.48 k 0.17 1.45 I! 0.08 
0.58 ? 0.12 0.48 k 0.07 
0.90 + 0.07 0.97 k 0.03 
0.67 rt 0.02-ab 0.85 2 0.07-a 

1.62 2 0.11 1.72 2 0.07 0.61 2 0.08-ab 0.76 t 0.06-a 
50.03 2 4.31 -ab 54.99 * 4.22-a 
27.00 2 1.81 27.82 k 2.88 
12.28 k 2.04 12.05 2 1 .OO 

8.34 2 1.41 5.59 2 0.72 

16.81 2 1.12 16.17 2 1.31 

0.24 rfI 0.04-c 
3.95 2 0.11 
2.22 2 0.17 
1.48 ? 0.09 
0.50 ? 0.06 
0.97 t 0.05 
0.57 + 0.06-b 

1.58 + 0.06 0.59 2 0.03-b 
42.83 t 3.14-b 
22.02 2 1.50 
15.61 ? 3.00 

5.58 t 1.16 

20.88 k 1.69 

s (P = 0.000) 
NS 
NS 
NS 
NS 

s (P N_so.02) 

s (P ZO21) 
S(P = 0.046) 

NS 
NS 

NS 

NS 

Values with different letters within a column are significantly different (P < 0.05). 

S4 phenotypes. The possibility that the single band pheno- 
types were heterozygous for the null phenotype cannot be 
excluded. I8 The results s u gg est that the double band phe- 
notype group, all members of which had at least one lighter 
Lp(a) component than the S3 and S4 groups, had higher 
(60%-500%) mean concentrations of Lp(a) than S3 and S4 
while S3 had a higher (300%) mean level of Lp(a) than S4 
(Table 2; Figure 2). 

In this study, Lp(a) phenotype did not influence serum 
concentrations of total cholesterol, LDL-cholesterol, or 
HDL-cholesterol but it did appear to affect concentrations 
of triglycerides and apoB on the baseline diet because S4, 
the phenotype group with the least mobile Lp(a) band, had 
higher levels of both variables (P = 0.02) (Table 2). 

We also noted that the Lp(a) phenotype had no effect 
(P > 0.05) on LDL-receptor variables including LDL 
binding or LDL degradation. However, there were signifi- 
cant differences among the phenotype groups in one param- 
eter of reverse cholesterol transport (RCT) (Table 2), e.g. 

the double band phenotype group had lower lecithin acyl 
cholesterol transferase (LCAT) activity (P = 0.046) in 
plasma than the other phenotype groups although there are 
no known mechanisms of action of Lp(a) that would explain 
an effect on LCAT activity. 

Injl~ence of diet on serum Lp(a) concentration 

A second focus of this study was to evaluate the effect on 
Lp(a) concentrations of substituting diets with 8:0 + 10:0 
and 12:0 for a polyunsaturated baseline diet. Both saturated 
fat diets reduced serum Lp(a) concentrations (P = 0.014 
for 8:0 + IO:0 and P = 0.05 for 12:0) (Figure 3). The 
correlation of Lp(a) concentrations between the two base- 
line periods and between the two treatment periods was 
strong (r = 0.967 for baseline, and 0.868 for treatment), 
meaning that subjects with the highest Lp(a) values main- 
tained the highest values regardless of diet. Although Lp(a) 
levels decreased in all Lp(a) phenotype groups, on both 

a 

Figure 2 Lp(a) concentration among different Lp(a) pheno- 
types on the baseline diet (a, b, c denotes a significant differ- 
ence P < 0.05). One subject with null Lp(a) phenotype was 
not included in this figure &p(a) levels was 0.016 g/L). 

SllS2, SUS3, S21S4 
(n=5) 

43(a)- 
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Figure 3 Lp(a) concentrations decreased significantly on the 8:0 + 
1O:O and 12:O diets. 

saturated diets there were no significant differences among 
Lp(a) phenotypes in the change in concentration induced by 
feeding the saturated diets (Table 3). 

Influence of Lp(a) phenotype on the lipoprotein 
response to the saturated fat diets and on 
lipoprotein metabolism 

Several statistical analyses were used to evaluate the effect 
of Lp(a) phenotype. A paired t-test was used to assess 
significant changes from baseline within a phenotype and 
diet group. Two-way ANOVA assessed phenotype effects 
in an analysis of the combined test diet groups (TubEe 3). 
Some phenotype groups experienced a significant change 
from baseline when the saturated fat diets were consumed, 
whereas others did not. However, in this study in which 
there were small numbers of subjects in some phenotype 
groups in a two-way ANOVA, there were no significant 

main effects of phenotype on the responses to the saturated 
fat diets for any parameter of lipoprotein metabolism with 
one exception, serum apoA-I, which increased in the double 
band phenotype group and decreased in the other groups 
(Table 3). However, there is no known mechanism of action 
of Lp(a) that explains this effect. 

Influence of Lp(a) phenotypes on LDL degradation 
and binding by MNC 

The rate of receptor-mediated iz51-LDL degradation in 
MNC increased on the 8:O + 10:0 diet but decreased on 
12:0 in all subjects. Diet but not Lp(a) phenotype signifi- 
cantly influenced the response of receptor-mediated LDL 
degradation and binding by MNC to the substitution of the 
saturated diets for the baseline diet (Table 3). There were no 
significant differences in nonspecific LDL degradation 
either between dietary treatments or among different Lp(a) 
phenotypes. 

Discussion 

The objective of this study was to determine the effect of 
Lp(a) polymorphism on 1) serum lipoprotein concentrations 
and metabolism and 2) the cholesterolemic response to a 
change from a baseline polyunsaturated diet to two satu- 
rated diets. The major findings were that 1) both 8:0 + 10:0 
and 12:0 decreased serum Lp(a) concentrations compared 
with the baseline diet, 2) the metabolic regulation of Lp(a) 
was independent of LDL, 3) there was no compelling 
evidence that Lp(a) polymorphism influenced the cholester- 
olemic response to a change from a polyunsaturated fat to 
saturated diets although additional studies involving larger 
number of subjects would be desired. Significant diet effects 
on lipoprotein metabolism were noted in this study but their 
implications apart from Lp(a) polymorphism will be dis- 
cussed elsewhere. 

Table 3 Least square mean (LSM 2 STDERR) changes in lipoprotein metabolism by experimental diets among different Lp(a) phenotypes 

53 

434 phenotype Experimental diet Main effects Interaction 
Sll2, S2/3, Pheno Diet Pheno x Diet 

s4 S214 8:0 + 1O:O 12:o (P value) (P value) (P value) 

b(a) (9/L) -0.07 2 0.03 -0.01 k 0.02 -0.04 k 0.03 -0.03 2 0.01 -0.04 + 0.01 0.2826 0.4076 0.0890 
TC (mmol/L) 0.33 2 0.16 0.35 + 0.12 0.56 k 0.16 0.31 ” 0.13 0.52 5 0.12 0.5374 0.2662 0.4647 
LDL-C (mmol/L) 0.23 k 0.15 0.31 + 0.11 0.51 -t 0.15 0.31 * 0.14 0.40 2 0.13 0.4333 0.6445 0.2382 
HDL-C (mmol/L) 0.06 +- 0.05 0.06 -+ 0.03 0.07 + 0.05 0 f 0.04 0.12 2 0.04 0.9771 0.0360 0.8084 
HDL-C (mmoi/L) -0.01 k 0.05 -0.04 2 0.03 -0.01 -t 0.05 -0.10 5 0.02 0.05 2 0.02 0.8602 0.0004 0.5695 
HDL-C (mmol/L) 0.08 k 0.03 0.09 I! 0.02 0.08 + 0.03 0.10 -c 0.03 0.07 t 0.02 0.8589 0.4925 0.2993 
TG (mmol/L) 0.08 ” 0.07 -0.03 k 0.05 -0.03 k 0.07 0.01 + 0.05 0.00 2 0.05 0.4742 0.9473 0.0866 
Apo A-l (g/L) -0.01 2 0.06 -0.11 -+ 0.04 0.22 + 0.06 0.02 2 0.10 0.04 2 0.09 0.0023 0.8600 0.4644 
APO S (g/L) 0.11 5 0.05 0.02 t 0.04 0.05 I 0.05 0.03 -c 0.04 0.09 k 0.03 0.3761 0.2553 0.4538 
LCAT (pmole/Uhr) 1.25 k 4.50 5.79 t 3.18 7.38 2 0.05 2.63 k 3.06 6.99 2 2.83 0.6065 0.3151 0.1600 
CETP (~mole/Uhr) 1.84 t: 2.04 1.86 t 1.44 3.25 -c 2.04 -0.65 5 1.48 5.29 2 1.37 0.8410 0.0112 0.8162 
Receptor-mediated LDL -0.27 2 1.61 1.33 + 1.13 2.82 k 1.61 4.73 + 1.10 -2.14 2 1.01 0.4189 0.0005 0.1150 

degradation 
(rig/l O6 MNC/hr) 

Nonspecific LDL degradation -0.99 2 2.70 2.77 t 0.91 4.39 2 2.70 -0.16 + 2.02 4.27 2 1.87 0.3678 0.1316 0.4365 
(rig/l O6 MNC/hr) 

LDL binding (rig/l O6 MNC) 0.11 2 1.65 1.06 t 1.17 1.77 2 1.65 4.20 + 2.03 -2.24 2 1.87 0.7769 0.0364 0.7016 
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Diet affects Lp(a) concentration 

According to many but not all previous human studies, diet 
does not influence Lp(a) concentrations in serum.29,46-52 
Recently, trans-monounsaturated37-39 and partially hydro- 
genated fatty acids4’ were shown to raise Lp(a) levels, but 
the results were not consistent. Also, Tholstrup et a1.4’ 
indicated that a diet high in Cl8 (stearic acid) increased 
plasma Lp(a) concentration but diets high in Cl6 (palmitic 
acid) and Cl4 (myristic acid) did not affect Lp(a) levels. In 
another study, n-3 fatty acids reduced Lp(a) levels com- 
pared with n-6 fatty acids. 53 Interestingly, in this study the 
8:0 + 10:0 and 12:0 treatments decreased serum Lp(a) 
concentrations by at least 27%, whereas LDL-C concentra- 
tions increased by at least 12%. 

Dietary treatments influenced Lp(a) levels in some stud- 
ies of primates in a manner not entirely consistent with the 
human studies. Rainwater et a1.54 found that a diet high in 
cholesterol and saturated fat raised plasma Lp(a) levels. In 
addition, Brousseau et al. 55 observed that Lp(a) levels were 
significantly higher when the diet was enriched in saturated 
fat compared with diets rich in monounsaturated or PUFAs. 
Hepatic mRNA levels of ape(a) were also higher in mon- 
keys fed saturated fatty acid compared to monounsaturated 
fatty acid. Although the saturated fat diet in the study of 
Brousseau et al. was rich in 12:O (7.2 en%), the finding of 
increased Lp(a) levels was opposite to the results of this 
current study. One explanation may be the lower percentage 
of 12:0 (7.2 en% vs. 14 en% in this study) or a difference in 
metabolism between human and nonhuman primates. Al- 
though some studies indicated that Lp(a) levels are mainly 
a function of synthetic mechanisms,56,57 the rate of clear- 
ance of ape(a) may also be a factor. 

Association between LDL and Lp(a) metabolism 

Metabolic regulation of Lp(a) may be independent of LDL 
because the correlation between diet-induced concentration 
changes in LDL-C and apoB (r = 0.408) was higher than 
that between Lp(a) and apoB (r = -0.153), which was in 
agreement with Albers et al. 27 In this study a negative small 
or moderate correlation was observed on the baseline diet 
between concentrations of either LDL-C (r = -0.189) or 
apoB (r = -0.339) and Lp(a), whereas there was a strong 
positive correlation between LDL-C and apo B (r = 0.7 12). 
These results were in agreement with Brown et a1.49 who 
did not find a significant correlation between increases in 
either LDL-C or apoB and Lp(a), nor between dietary- 
induced changes in LDL-C or apoB and Lp(a) in normo- 
lipidemic men subjected to short-term dietary cholesterol 
and fat modifications. 

In contrast, some studies have indicated that Lp(a) 
binding to fibroblasts seems to be mediated by the cellular 
LDL receptor. 15z5’ In addition, Lp(a) catabolism was in- 
creased in transgenic mice overexpressing the human LDL 
receptor. 59 Utermann et al. 6o found that Lp(a) levels were 
elevated in LDL receptor deficient patients with FH hyper- 
cholesterolemia. However, Ghiselli et a1.6’ observed that 
there was no significant or consistent elevation of the Lp(a) 
levels detected in FH hypercholesterolemic patients. These 
results were in line with other studies that the LDL receptor 

activity only had small influence on Lp(a) metabolism.62-66 
Furthermore, Rader et a1.67 also found that radiolabeled 
Lp(a) was catabolized at a similar rate in the FH homozy- 
gous patients who have little or no functional LDL receptor 
activity as in normal subjects. The authors, therefore, 
concluded that LDL receptor is not necessary for normal 
Lp(a) catabolism. Finally, plasma Lp(a) levels were not 
decreased by administering the drugs that upregulate LDL 
receptor activity. 15,29,68.69 In summary, many but not all 
findings suggest that the metabolic regulation of Lp(a) is 
independent of LDL even though Lp(a) shares the same 
structural protein, apoB. Because in this study there was 
only a small association on the baseline diet between serum 
Lp(a) levels and specific LDL degradation (r = 0.313), 
LDL receptor activity is probably not a major determinant 
of serum Lp(a) levels as suggested by other reports.6’S67.70 
Further studies are needed to verify the mechanism. 

Lp(a) polymorphism and lipoprotein metabolism 

There are some apolipoprotein polymorphisms that influ- 
ence LDL and HDL metabolism and response to fat- 
modified diets, e.g. apolipoprotein E.7’-73 There is no 
compelling reason to suspect that Lp(a) variants have such 
an influence because their major effect on the atherogenic 
process seems to involve thrombosis-thrombolysis. Never- 
theless, when the subjects in this study consumed the 
constant baseline diet, persons with different Lp(a) pheno- 
types had significantly different serum concentrations of 
apoB and triglycerides as well serum LCAT activity. 
However, there was little evidence that Lp(a) polymorphism 
influenced the changes that occurred in lipoprotein metab- 
olism when the baseline diet was switched to a high 
saturated fat diet. Additional investigations involving larger 
numbers of subjects within specific Lp(a) phenotype groups 
and other saturated fatty acids, e.g. myristic, palmitic and 
stearic acid, would be desired. 

Conclusion 

This was the first piece of research to indicate that Lp(a) 
concentrations are reduced by diets with 8:0 + 10:0 and 
12:0. However, these fats are not abundant in American 
food products. Although MCT diets could be used to treat 
patients with high Lp(a) levels, but normal LDL levels, 
genetic inheritance has a greater effect on this risk factor for 
CHD than diet. We also noted, as did other researchers, that 
concentrations of Lp(a) and LDL are regulated indepen- 
dently of each other despite their similar structure. In this 
investigation, Lp(a) polymorphism did not modulate the 
lipoprotein response induced by fat modification. This 
study can serve as a guideline for further research 
because the effects of dietary treatments have not been 
compared among different Lp(a) phenotypes. Additional 
studies are required involving larger groups of subjects 
and other fats. 
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